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Example 1 (Linear Regression)

Let us consider a general case.

• Data: {ai, bi}mi=1, where ai ∈ Rn, bi ∈ R.

• Suppose that
bi = a>i x + εi,

where x = (x1, . . . , xn)> is denoted as regression coefficient.

• Matrix Form: denote that b = (b1, . . . , bm)> ∈ Rm, A = (aij) = (a1,a2, . . . ,am)> ∈ Rm×n, and

b = Ax + ε,

where ε = (ε1, . . . , εm)>.

Optimization Formulation:

min
x

1

2
‖Ax− b‖22, (1)

where ‖ · ‖2 is the Euclidean norm (vector length), that is ‖x‖2 :=
√∑n

i=1 x
2
i .

Example 2 (Nonlinear Regression)

• Data: {ai, bi}mi=1, where ai ∈ Rn, bi ∈ R.

• Suppose that
bi = Φx(ai) + εi,

where Φx : Rn → R is a nonlinear function with the model parameter x = (x1, . . . , xn)>.

• Let us give you a concreted example of Φx:

Φx(a) =
exp(a>x)

1 + exp(a>x)
.

Optimization Formulation:

min
x

m∑
i=1

(bi − Φx(ai))
2. (2)

This is the so-called Nonlinear Regression or Nonlinear Least Squares Method.

Example 3 (Deep Forward Neural Networks)

Let us consider a very special nonlinear regression model that is the so-called deep forward neural networks.

• Data: {ai, bi}mi=1, where ai ∈ Rn, bi ∈ R.
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Figure 1: An example of Deep Forward Neural Networks

• We suppose that any data point (a, b) is inputted into a deep neural network model with the structure
in Figure 1.

• Then, from the input layer to the first hidden layer, we have

y11 = w1
11a1 + w1

12a2 + w1
13a3, (3)

z11 = f11 (y11), (4)

y12 = w1
21a1 + w1

22a2 + w1
23a3, (5)

z12 = f12 (y12), (6)

where f11 and f12 are the corresponding active function.

• From the first hidden layer to the output layer, we have

y21 = w2
11z

1
1 + w2

12z
1
2 , (7)

z21 = f21 (y21). (8)

• Integrate them together,

z21 = f21 (y21) (9)

= f21 (w2
11z

1
1 + w2

12z
1
2) (10)

= f21 (w2
11f

1
1 (y11) + w2

12f
1
2 (y12)) (11)

= F2 ◦ F1(a) := FDW (a), (12)

where FD : R3 → R is a composite function and W = {w1
11, w

1
12, . . . , } includes all the parameters we

have to estimate.

Optimization Formulation:

min
W

m∑
i=1

(bi − FDW (ai))
2. (13)
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This example indicates that the famous deep forward neural networks is a special case of nonlinear regression.

Example 4 Generalized Linear Model (GLM). Let us consider the following three management problems.

• b = House Price = F (a1 = number of rooms, a2 = school distriction, a3, . . . )

• b = Credit Rate = F (a1 = education, a2 = salary, a3, . . . )

• b = Number of Visit this month = F (a1 = number of visit last month, a2 = RFM, a3, . . . )

In this example, we introduced three classic regression models, linear regression(house price), Poisson regres-
sion (number of visit this month) and logistic regression (credit rate) derived from GLM. We parameterized
the parameters in the statistic models as a linear function of covariant variables a, and formed the optimiza-
tion problem from the likelihood.

Consider the input-output pairs {ai, bi}mi=1 as the data. The procedure can be summarized as following recipe,

1. write down a probabilistic model for bi

2. link model parameter x with ai

3. formed the optimization problem using maximum likelihood that aim to discover x with all data {ai, bi}mi=1

Next we instantiate this recipe by three examples.

(i) Linear Regression: Given training data {ai, bi}mi=1 with ai ∈ Rn and bi ∈ R. Suppose each bi
i.i.d.∼

N(µi, σ
2), that is

P (bi|µi, σ2) =
1√
2πσ

exp{− (bi − µi)2

2σ2
}

=
1√
2πσ

exp{− b2i
2σ2
} exp{−

1
2µ

2
i − biµi
σ2

}.

It is convention to choose the parameters that multiply bi as the linear function of the variables ai with
the parametric coefficient x. Here we make the assumption that

θi = µi = 〈ai,x〉.

We wish to examine how we find a good x to make this work. Our strategy for this is to maximize the
likelihood of all observations {bi} as a function of x, i.e.

max
x

∏
i

exp{− 1

σ2
(
1

2
µ2
i − biµi)} ⇒ max

x

∏
i

exp{− 1

2σ2
(〈ai, x〉2 − bi〈ai,x〉)}.

To maximize this expression, we take the negative log of the expression, i.e. we want to minimize

min
x

1

σ2

n∑
i=1

(
1

2
〈ai,x〉2 − bi〈ai,x〉).

To write it more compactly, we denote,

A =

a
>
1
...

a>m

 , b =

 b1...
bm

 .
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And we have,
m∑
i=1

〈ai, x〉2 = ‖Ax‖2,
m∑
i=1

bi〈ai,x〉 = 〈b, Ax〉,

we get the minimization problem

arg min
x

1

2
‖Ax‖2 − 〈b, Ax〉 = arg min

x

1

2
‖Ax− b‖2

which is a linear least-squares regression problem.

(ii) Logistic Regression: Let bi ∈ {0, 1} and pi be the probability of success, i.e.

p(bi|pi) = pbii (1− pi)1−bi

= exp{bi ln pi + (1− bi) ln(1− pi)}
= exp{bi(ln pi − ln(1− pi)) + ln(1− pi)}
= exp{bi ln pi

1−pi + ln(1− pi)}.

The choice θi = ln pi
1−pi is called the canonical parameter, i.e. pi = exp(θi)

1+exp(θi)
= (1 + exp(−θi))−1.

Letting θi = 〈ai, x〉 and noting that ln(1− pi) = − ln(1 + exp(θi)) the probability becomes

p(bi|θi) = exp{biθi − ln(1 + exp(θi))}.

The fitting problem is found by minimizing the negative log of the above expression,

min
x

m∑
i=1

[ln(1 + exp(θi))− biθi] = min
x

m∑
i=1

ln(1 + exp(〈ai,x〉))− 〈b, Ax〉.

(iii) GLM: We find that given a family of distributions for bi, given µi, σ
2 we have

f(bi|µi, σ2) = g1(bi, σ
2) exp{biµi − g2(µi)

g3(σ2)
}

for some functions g1, g2, g3. And g2 is given by

1. g2(µi) = 1
2µ

2
i for linear regression,

2. g2(µi) = exp(µi) for Poisson regression,

3. g2(µi) = ln(1 + exp(µi)) for logistic regression.

This gives us the problem

min
x

n∑
i=1

g2(〈ai,x〉)− 〈b, Ax〉.

The difficulty of this problem depends on properties of g2. In these three cases g2 is convex and smooth,
but this won’t always be the case. This motivates us to look at properties of continuous functions.

We will discuss basic function properties that will determine how good will an optimization algorithm
perform on them.

Example 5 (Portfolio Management)

Portfolio Management (see Figure 2) is the art and science of making decisions about investment mix and
policy, matching investments to objectives and balancing risk against performance.

Modeling:

• n assets or stocks that are hold over a period of time.
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Figure 2: An example of Portfolio Management

• xi denotes the amount of asset i, the final period.

• original price pi0 for asset i, the final price pit at time t, then the return on asset i is ri = pit−pi0
pi0

.

• the overall return is R =
∑n
i=1 rixi.

• Suppose that r = (r1, . . . , rn)> is a random vector with expectation of µ = (µ1, . . . , µn)>, and covari-
ance of Σ.

• Aim: Finding a set of asset x = (x1, . . . , xn)> to maximize the expected overall return and balancing
the risk perform.

Optimization Formulation:

max
x

E(R)− λV ar(R), (14)

s.t. xi ≥ 0, i = 1 . . . , n, (15)
n∑
i=1

xi = 1, (16)

where E(R) is the expectation of R, V ar(R) is the variance of R and λ > 0 is called risk aversion parameter
for balancing the investment risk and expected return. Finally, we have that

max
x

µ>x− λx>Σx, (17)

s.t. xi ≥ 0, i = 1 . . . , n, (18)
n∑
i=1

xi = 1, (19)

Q: How to compute E(R) and V ar(R)?

Q: Why not xi < 0?

Remark 1 This example is significantly important. Because

• This is called a nonlinear program due to the nonlinear objective function.
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• It is also called a quadratic program. Why???

• Harry Markowiz proposed this model called Modern Portfolio Theory or Mean-Variance Anal-
ysis and obtained the Nobel Prize in 1990.
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